[1] 袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(01):1-7.YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(01):1-7.[2] 金洪伟,杨卓亚,徐刚.基于改进AHP-GRA评价模型的煤与瓦斯突出危险性评价[J].矿业安全与环保,2020,47(05):113-118+126.JIN Hongwei, YANG Zhuoya, XU Gang, Evaluation of coal and gas outburst risk based on improved AHP-GRA evaluation model [J]. Mining Safety & Environmental Protection,2020,47(05):113-118+126.[3] 吕有厂,王玉杰.深井突出煤层底板巷防治煤与瓦斯突出工程研究[J].煤炭工程,2017,49(11):13-16.LU Youchang, WANG Yujie. Engineering research on coal and gas outburst control for outburst coal seam floor roadway in deep mine[J]. COAL ENGINEERING,2017,49(11):13-16.[4] 薛俊华,肖健,杜轩宏,等.我国煤矿保护层开采卸压瓦斯抽采现状及发展趋势[J].煤田地质与勘探,2023,51(06):50-61.XUE Junhua, XIAO Jian, DU Xuanhong, et al. Current situation and development trend of pressure-relief gas extraction in the protective layer mining in coal mines in China[J]. Coal Geology & Exploration,2023,51(6):50-61.[5] 杜栋栋,雷文杰,李东会,等.矿井瓦斯抽采钻孔偏移特性研究[J].中国安全科学学报,2024,34(03):155-161.DU Dongdong, LEI Wenjie, LI Donghui, et al.Study on deviation characteristic of gas extraction borehole dilling in underground coal mine[J].China Safety Science Journal,2024,34(3):155-161.[6] 冀超辉.基于穿层钻孔偏移规律的角度补偿纠偏技术[J].河南理工大学学报(自然科学版),2023,42(04):34-39.JI Chao Hui. Angle compensation and correction technology based on the offset law of cross-seam borehole[J].Journal of Henan Polytechnic University (Natural Science), 2023, 42(4):34-39.[7] 柴敬,兰浩,马晨阳,等.保护层开采下伏煤岩应力释放与卸压程度识别[J/OL].煤炭学报,1-13[2024-11-01].https://doi.org/10.13225/j.cnki.jccs.2023.0895.CHAI Jing, LAN Hao, MA Chenyang, et al. Identification of the degree of stress release and unloading in the underlying coal rock of protected seam mining[J/OL]. Journal of China Coal Society, ,1-13[2024-11-01].https://doi.org/10.13225/j.cnki.jccs.2023.0895.[8] 秦汝祥,郁亚楠.保护层开采工作面采空区瓦斯分层治理[J]. 安全与环境学报,2016,16(05):108-113.QIN Ru-xiang, YU Ya-nan. On the gas control of the hierarchical goaf by protecting the coal seam mining face[J]. Journal of Safety and Environment,2016,16(05):108-113.[9] 张兆一.保护层开采与卸压瓦斯协同抽采技术研究与应用[J].矿业安全与环保,2024,51(04):74-79.ZHANG Zhaoyi.Research and application of collaborative gas extraction technology for protective layer mining and pressure relief[J].Mining Safety & Environmental Protection,2024,51(4):74-79.[10] 刘永琪,徐良骥,刘潇鹏,等.高瓦斯煤层下保护层开采覆岩裂隙发育特征研究[J].矿业研究与开发,2024,44(02):66-73.LIU Yongqi, XU Liangji, LIU Xiaopeng, et al. Research on Development Characteristics of Overburden Fracture in Lower Protective Layer Mining of High-Gas Coal Seams[J]. Mining Research and Development,2024,44(02):66-73.[11] 程详,赵光明,李英明,等.软岩保护层开采覆岩采动裂隙带演化及卸压瓦斯抽采研究[J].采矿与安全工程学报,2020,37(03):533-542. Journal of Mining & Safety EngineeringCHENG Xiang1,2,3,ZHAO Guangming1,LI Yingming, et al. Evolution of overburden mining-induced fractured zone and pressure-relief gas drainage in soft rock protective seam [J]. Journal of Mining & Safety Engineering,2020,37(03):533-542. [12] 齐庆杰,夏世羽.基于分源预测法的瓦斯涌出量预测共享平台的构建[J].矿业安全与环保,2018,45(02):59-64. QI Qingjie, XIA Shiyu. Construction of Sharing Platform for the Gas Emission Rate Prediction Based on Source Prediction[J]. Mining Safety & Environmental Protection,2018,45(02):59-64.[13] 祁云,白晨浩,代连朋,等.改进双向长短期记忆神经网络的瓦斯涌出量预测[J/OL].安全与环境学报,1-10[2024-11-01].https://doi.org/10.13637/j.issn.1009-6094.2024.0383.QI Yun, BAI Chenhao, DAI Lianpeng, et al. Enhanced bidirectional long short-term memory neural network for gas emission forecasting[J/OL]. Journal of Safety and Environment,1-10[2024-11-01].https://doi.org/10.13637/j.issn.1009-6094.2024.0383.[14] 朱墨然.基于瓦斯含量反演的工作面瓦斯涌出量动态预测研究[J].煤炭工程,2024,56(04):133-137.ZHU Moran, Dynamic prediction of gas emission in working face based on gas content inversion[J]. COAL ENGINEERING,2024,56(04):133-137.[15] 高先志.利用甲烷碳同位素研究混合气的混合体积[J].沉积学报,1997,(02):63-65.Gao Xianzhi. Volume Evaluation of the Gas Mixed With Other Gases Using Carbon Isotopic Compositions[J]. ACTA SEDIMENTOLOGICA SINICA,1997,(02):63-65.[16] 高宏,杨宏伟,慈祥.基于碳氢同位素分析技术的瓦斯涌出构成研究[J].煤矿安全,2018,49(11):16-19.GAO Hong, YANG Hongwei, CI Xiang. Gas Emission Composition Based on Carbon-hydrogen Isotope Analysis Technology[J]. Safety in Coal Mines,2018,49(11):16-19.[17] 王路,赵庆珍,翟志伟,等.基于FTIR与烷烃气碳同位素特征的中阶煤结构演化研究[J].煤炭工程,2024,56(02):171-177.WANG Lu, ZHAO Qingzhen, ZHAI Zhiwei, et al. Structural evolution in middle rank coals based on the characterization of FTIR and carbon isotope of alkane gas[J]. COAL ENGINEERING,2024,56(02):171-177.[18] 柴永兴,周伟.基于碳同位素的朱集煤矿首采工作面层瓦斯来源定量分析方法[J].煤矿安全,2019,50(06):176-180.CHAI Yongxing, ZHOU Wei. Quantitative Analysis Method of Gas Source in the First Mining Face of Zhuji Coal Mine Based on Carbon Isotope[J]. Safety in Coal Mines,2019,50(06):176-180.[19] 周伟,袁亮,张国亮,等.采空区瓦斯涌出来源量化判识方法——以寺河矿为例[J].煤炭学报,2018,43(04):1016-1023.ZHOU Wei, YUAN Liang, ZHANG Guoliang, et al. A new method for determining the individual sources of goaf gas emissions:A case study in Sihe Coal Mine[J].Journal of China Coal Society,2018,43(4):1016-1023.[20] Zhou Wei , Xue Sheng , Han Yunchun,et al.Application of stable carbon and hydrogen isotope technology in the determination of gas sources from limestone layers at Shuangliu mine, China[J].Journal of Geophysics and Engineering, 2021, 18(2):282-290.[21] Xue Junhua, Du Xuanhong , Ma Qian, et al.Research and application of goaf gas source identification technology based on the carbon–hydrogen isotope tracer[J].Arabian Journal of Geosciences, 2022, 15(3):1-8.[22] Hu Lanqing , Hu Shengyong , Feng Guorui ,et al.A New Method for Determining Gob Methane Sources Under Extraction Conditions of Longwall Coal Mines[J].Natural Resources Research, 2021, 30(3):2241-2253.[23] 周福宝,刘宏,刘应科,等.煤层群开采工作面瓦斯精准定量溯源原理与技术[J].煤炭科学技术,2021,49(05):11-18.ZHOU Fubao, LIU Hong, LIU Yingke, et al.Principle and technology of precise and quantitative gas traceability incoal seam group mining face [J].Coal Science and Technology,2021,49(5):11-18.[24] 国家矿山安全监察局,防治煤与瓦斯突出细则[M].北京:煤炭工业出版社;2019.[25] SY/T 5238-2019.有机物和碳酸盐岩碳、氧同位素分析方法[S].[26] SY 5239-1991.石油和沉积有机质的氢、碳同位素分析方法[S]. |